Исследование локальной структуры твердого раствора Pb_xSn_{1-x}S методом EXAFS-спектроскопии

© А.И. Лебедев, И.А. Случинская, И. Манро*

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия * Daresbury Laboratory, WA4 4AD Warrington, U.K.

E-mail: swan@mch.chem.msu.su

(Поступила в Редакцию 20 ноября 2001 г.)

Методом EXAFS-спектроскопии изучено локальное окружение атомов свинца в твердых растворах $Pb_x Sn_{1-x}S$ с кубической и орторомбической структурой. В образцах с орторомбической структурой кратчайшее расстояние Pb–S оказалось на ≈ 0.2 Å короче, чем в образцах с кубической структурой, что свидетельствует о стереохимической активности $6s^2$ -неподеленной пары атомов Pb. Обнаружено проявление сильного ближнего порядка в расположении атомов металла, приводящего к образованию зигзагообразных цепочек ... – Pb–Sn–Pb–Sn–..., направленных вдоль оси *с* (в установке *Pbnm*) в орторомбических образцах. Показано, что проявление такого ближнего порядка в $Pb_{0.5}Sn_{0.5}S$ может приводить к образованию сверхструктур с пр. гр. C_{2v}^2 или C_{2v}^7 .

Одной из задач при исследовании твердых растворов является установление связи между отклонением структуры твердых растворов от идеальной и их физическими свойствами.

Немногочисленные сведения о твердых растворах в системе SnS-PbS достаточно противоречивы. В этой системе образуется ограниченный ряд твердых растворов, поскольку SnS имеет орторомбическую структуру (пр. гр. D_{2h}^{16} – *Pbnm*), а PbS — кубическую структуру типа NaCl. По данным работ [1-3], предельная растворимость SnS b PbS составляет $\approx 10 \text{ mol.\%}$, a PbS b SnS около 50 mol.%. Мнения исследователей существенно расходятся по вопросу о том, является ли в этой системе состав Pb_{0.5}Sn_{0.5}S (существующий в природе в виде минерала тиллита [4]) индивидуальной фазой или твердым раствором на основе SnS. Одна группа авторов рассматривает этот состав как индивидуальную фазу, кристаллизующуюся в пр. гр. D_{2h}^{16} [2,5,6] либо в пр. гр. D_{2h}^{13} или C_{2v}^7 [2,6]. Авторы других работ считают, что данный материал отвечает твердому раствору на основе SnS [1,3,7,8]. Чтобы разрешить это противоречие, необходимо провести комплексные исследования ближнего и дальнего порядков в образцах этого состава.

Наш интерес к изучению системы SnS–PbS связан с нецентральностью примесных атомов большого размера, обнаруженной ранее в полупроводниковых твердых растворах $Ge_{1-x}Pb_x$ Те и $Ge_{1-x}Sn_x$ Те [9]. Переход атомов Pb и Sn в нецентральное положение в них объяснялся деформацией сферически-симметричного распределения электронной плотности неподеленной s^2 -электронной пары этих атомов. Такая деформация была энергетически выгодной и приводила к образованию неодинаковых по длине химических связей. Для атомов Pb это было достаточно неожиданно, поскольку для соединений двухвалентного свинца характерна стереохимическая неактивность $6s^2$ -неподеленной пары, из-за чего локальное окружение Pb в кристаллах обычно симметрично (как в PbS). Поэтому представлялось интересным исследовать, будет ли наблюдаться искажение локального окружения атомов Pb в SnS и будет ли оно связано со стереохимической активностью их $6s^2$ -электронных пар.

Для решения поставленной задачи был выбран современный рентгеновский метод исследования локальной структуры — метод EXAFS-спектроскопии, активно используемый для изучения структуры твердых растворов.

1. Методика эксперимента

1.1. О б р а з ц ы. Образцы твердого раствора $Pb_x Sn_{x-1}S$ с x = 0.1, 0.2, 0.35, 0.5 и 0.95 получались сплавлением предварительно синтезированных PbS и SnS в вакуумированных кварцевых ампулах с последующим отжигом спалвов при 645°C в течение 70–96 h. Однофазность образцов проверялась рентгеновским методом. При 300 К кристаллическая структура образцов с $x \le 0.5$ соответствовала орторомбической фазе, а образца с x = 0.95 — кубической фазе. Непосредственно перед измерениями спектров EXAFS сплавы растирались в порошок, просеивались через сито и наносились на поверхность ленты типа "скотч". Оптимальная для записи спектров толщина поглощающего слоя получалась путем многократного складывания ленты.

Измерения спектров EXAFS проводились на станции 7.1 в лаборатории Дарсбери (Великобритания) на $L_{\rm III}$ -краю поглощения Pb (13.055 keV) в геометрии на прохождение при 80 К. Монохроматизация излучения осуществлялась двухкристальным монохроматором Si(111); интенсивность падающего и прошедшего сквозь образец излучения регистрировалась ионизационными камерами. Для каждого образца делались две записи спектров.

1.2. Методика обработки. Выделение функции EXAFS $\chi(k)$ из спектров пропускания $\mu x(E)$ проводилось аналогично работе [10]. После вычитания фона,

обусловленного поглощением излучения другими атомами, кроме Pb, с помощью сплайнов выделялась монотонная часть атомного поглощения $\mu x_0(E)$ и рассчитывалась зависимость $\chi = (\mu x - \mu x_0)/\mu x_0$ от волнового вектора $k = \sqrt{2m(E - E_0)}/\hbar$. За начало отсчета энергии фотоэлектрона E_0 принималась энергия, отвечающая точке перегиба на краю поглощения. Величина скачка на краю поглощения изменялась в пределах 0.10–1.5.

Из полученных кривых $\chi(k)$ с помощью прямого и обратного преобразований Фурье с использованием модифицированного окна Хэннинга выделялась информация об интересующих нас трех ближайших координационных сферах. Характерный диапазон выделения в *R*-пространстве составлял 1.2-3.7 Å. Расстояния *R_j*, координационные числа N_j и фактор Дебая–Уоллера σ_i^2 для каждой из трех координационных сфер (j = 1-3)находились путем минимизации среднеквадратичного отклонения экспериментальной и расчетной кривых $k^2 \chi(k)$. Кроме параметров R_i , N_i и σ_i^2 одноверменно варьировался сдвиг нуля по шкале энергий dE₀. Для уменьшения числа варьируемых параметров учитывались известные соотношения между координационными числами в структурах SnS и NaCl. Число варьируемых параметров (восемь) было примерно вдвое меньше числа независимых параметров (15–16) в данных $2\Delta R\Delta k/\pi$. Приводимые в работе ошибки в определении параметров находились из ковариационной матрицы и отвечают 95% доверительному интервалу их изменения.

Зависимости амплитуды и фазы обратного рассеяния, фазы центрального атома и длины свободного пробега фотоэлектрона от k, необходимые для получения теоретических кривых $\chi(k)$, рассчитывались с помощью программы FEFF [11].

2. Экспериментальные результаты

На рис. 1 показаны типичные зависимости $k^2\chi(k)$, полученные для всех образцов Pb_xSn_{1-x}S. Вид кривых для образцов с кубической ($x \ge 0.95$) и орторомбической ($x \leq 0.5$) структурой качественно различается, что свидетельствует о разном характере локального окружения атомов Pb в этих образцах. Анализ данных показывает, что в твердом растворе с x = 0.95 и в PbS атомы свинца окружены шестью атомами серы, расположенными на одинаковом расстоянии (см. таблицу и рис. 2). Для образцов с орторомбической структурой спектры хорошо описываются только моделью, в которой в первой координационной сфере три атома S расположены на одном расстоянии (R_1) , а три других на другом расстоянии (R_2) . Таким образом, ближайшее окружение Pb и SnS отличается от его окружения в PbS. Как следует из таблицы, при величении х от 0.1 до 0.5 расстояние R₁ в пределах ошбики измерений остается постоянным, а R_2 — слабо уменьшается. Обращает на себя внимание и достаточно высокое значение факторов Дебая-Уоллера для более длинной связи Pb-S.

Рис. 1. Типичные спектры EXAFS, полученные на L_{III} -краю поглощения свинца в образцах $\text{Pb}_x \text{Sn}_{1-x}\text{S}$ (сплошные линии), и их теоретическая аппроксимация (штриховые линии).

Рис. 2. Зависимость межатомных расстояний для трех ближайших координационных сфер атомов Pb в твердом растворе $Pb_x Sn_{1-x}S$ от параметра состава *x*.

Атомы металла (Pb, Sn) во второй координационной сфере в образцах с орторомбической структурой находятся на среднем расстоянии $R_3 \approx 3.5$ Å, которое незначительно возрастает с ростом *x*. Факторы Дебая– Уоллера для этой сферы (σ_3^2) оказываются даже меньше,

Параметр	x						SnS*
	0.1	0.2	0.35	0.5	0.95	1	Silo
$R_1, \text{ Å}$ $\sigma_1^2, \text{ Å}^2$ $R_2, \text{ Å}$ $\sigma_2^2, \text{ Å}^2$ $R_2, \text{ Å}$	2.750(8) 0.0066(13) 3.246(16) 0.0174(35) 3.534(13)	2.745(8) 0.0053(10) 3.243(16) 0.0120(26) 3.500(15)	2.752(4) 0.0087(6) 3.233(7) 0.0178(14) 3.522(7)	2.752(4) 0.0079(6) 3.232(8) 0.0187(16) 3.535(10)	2.954(8) 0.0095(11) 4.175(7) 0.0064(7)	2.942(6) 0.0086(9) 4.184(6) 0.0066(6)	$2.660(3) \\ 0.0036(4) \\ 3.301(8) \\ 0.0059(8) \\ 3.481(7)$
$\sigma_3^2, \text{\AA}^2$	0.0081(16)	0.0090(15)	0.0118(8)	0.0141(12)			0.0067(6)

Параметры локального окружения атомов Pb в образцах Pb_xSn_{1-x}S

* Данные EXAFS для локального окружения атома Sn в SnS получены на K-краю олова.

чем σ_2^2 (см. таблицу), однако они заметно увеличиваются с ростом x.

Как следует из таблицы, наибольшие значения среди факторов Дебая–Уоллера имеют факторы для более длинной связи Pb–S, причем они слабо зависят от состава. Для разделения вкладов теплового движения и статических искажений решетки в величину фактора Дебая–Уоллера нами были измерены температурные зависимости спектров EXAFS для образца Pb_{0.8}Sn_{0.2}S в интервале температур 80–300 К. Анализ полученных данных показал, что зависимость фактора Дебая– Уоллера σ_2^2 от температуры оказывается наиболее сильной. Отсюда можно заключить, что основной вклад в величину σ_2^2 вносят не статические искажения решетки, а тепловые колебания. Данное обстоятельство может указывать на то, что соответствующая химическая связь является слабой.

Поскольку в твердых растворах часто наблюдается ближний порядок, мы решили выяснить, проявляется ли он в расположении атомов металла во второй координационной сфере. Чтобы проверить эту возможность, мы

Рис. 3. Зависимость суммы квадратов невязок от локальной концентрации атомов Sn во второй координационной сфере атомов Pb. Кривые одного типа отвечают двум спектрам, записанным для образцов одного и того же состава. Стрелками обозначена средняя концентрация Sn в образце.

сравнивали экспериментальные спектры EXAFS с расчетными кривыми, полученными для разных отношений концентраций атомов Pb и Sn во второй координационной сфере свинца в предположении, что значения R₃ и σ_3^2 для обоих типов атомов равны. На рис. 3 показана зависимость суммы квадратов невязок S_{min} от локальной концентрации атомов Sn во второй координационной сфере атомов Рb для всех записанных спектров. Как следует из этого рисунка, для образцов с x = 0.2, 0.35 и 0.5 минимум на кривых отвечает локальной концентрации олова, существенно превышающей его среднюю концентрацию в образце; значение локальной концентрации, усредненное по нескольким спектрам для каждого из исследованных образцов, близко к 100%. По нашему мнению, появление такого ближнего порядка, при котором атомы Рb преимущественно окружаются атомами Sn, может быть объяснено деформационным взаимодействием атомов металла, из-за которого два крупных атома свинца не могут располагаться близко друг к другу.

3. Обсуждение результатов

Согласно нейтронографическим данным для SnS [12], шесть атомов S в первой координационной сфере олова располагаются на четырех различных расстояниях: 2.627 Å (один атом), 2.665 Å (два атома), 3.290 Å (два атома) и 3.388 Å (один атом). При этом два более коротких расстояния настолько близки, что разрешить их в спектрах EXAFS оказывается невозможным. То же касается и двух более длинных расстояний. По этой причине ближайшее окружение атомов металла в спектрах EXAFS должно быть представлено тремя короткими и тремя длинными расстояниями, каждое из которых определяется усредненной длиной составляющих связей. Именно это и наблюдается в эксперименте.

Из сопоставления данных EXAFS для локального окружения примесных атомов Pb и SnS с данными EXAFS для атомов Sn в чистом SnS (см. таблицу) следует, что более короткая связь Pb–S оказывается на ≈ 0.1 Å длиннее соответствующей связи Sn–S в SnS, а более длинная связь Pb–S — на ≈ 0.07 Å короче соответствующей связи Sn–S в SnS.

Следующим и, по нашему мнению, наиболее важным результатом является то, что длина короткой связи Pb-S в образцах с орторомбической структурой оказалась заметно (на ≈ 0.2 Å) короче длины связи Pb–S в PbS (2.94 Å). Уменьшение длины этой связи и расщепление первой координационной сферы на две компоненты указывают на то, что атомы Pb и SnS занимают несимметричное положение. Сравнение полученных в настоящей работе результатов с результатами исследования твердого раствора $Ge_{1-x}Pb_x$ Te [9] показывает, что в обеих системах наблюдается расщепление длин связей Pb-халькоген, причем сокращение длины короткой связи и в том и в другом случае примерно одинаково ($\approx 0.2 \, \text{A}$). Важно, что сокращение длины связи Рb-халькоген заметно меньше разности ионных радиусов Pb⁺² и Pb⁺⁴ (0.5 Å). Данный факт позволяет сделать вывод о том, что 6s²-электроны неподеленной пары не принимают участия в образовании химической связи, а происходит лишь деформация распределения электронной плотности этой неподеленной пары, т.е. ее переход в стереохимически активное состояние. Принимая во внимание то, что нецентральность Pb наблюдается в SnS и GeTe, а при введении атомов Рb в кубический SnTe по нашим данным не происходит никакого локального искажения их симметричного окружения, можно заключить, что атомы свинца становятся нецентральными только тогда, когда они попадают в решетки, симметрия которых ниже кубической. Таким образом, распределение электронной плотности неподеленной 6s²-пары атома Pb является достаточно "подвижным" и при известных условиях может переходить из неактивного (как в PbS, PbSe и РbTe) в активное состояние. Эта особенность неподеленной пары свинца может быть причиной структурной нестабильности и фазовых переходов, наблюдаемых во многих соединениях свинца.

Полученные нами результаты позволяют высказать некоторые соображения и о структуре исследуемых твердых растворов. Согласно нашим данным, все расстояния в ближайшем окружении атомов Pb в твердом растворе $Pb_x Sn_{1-x}S$ изменяются с *x* монотонным образом. Это позволяет предположить, что состав $Pb_{0.5}Sn_{0.5}S$ в системе SnS–PbS следует считать твердым раствором на основе SnS.

Рассмотрим теперь вопрос о ближнем порядке, обнаруженном в этой системе. Как известно, структура SnS состоит из двухслойных пакетов (рис. 4, a). Появление сильного ближнего порядка, при котором атомы Pb в одном двухслойном пакете преимущественно окружаются атомами Sn соседнего пакета, позволяет допутстить, что при соответствующих условиях в кристаллах Pb_{0.5}Sn_{0.5}S может возникнуть сверхструктурное упорядочение атомов металла, которое можно встретить в геологических обазцах (тиллите).

Если допустить, что локальная концентрация атомов олова во второй координационной сфере атомов свинца равна 100%, то в образцах Pb_{0.5}Sn_{0.5}S можно ожидать появления полностью упорядоченных зигзагообразных

Рис. 4. *а* — проекция структуры SnS на плоскость *ab*; *b* и *c* — две возможные схемы сверхструктурного упорядочения атомов металла в твердом растворе Pb_{0.5}Sn_{0.5}S. Пространственные группы сверхструктур: $b - C_{2v}^7$, $c - C_{2v}^2$.

"цепочек" ... – Pb–Sn–Pb–Sn–..., выстроенных вдоль оси c (перпендикулярно плоскости чертежа на рис. 4, a). Однако даже при полном упорядочении атомов в одной такой цепочке возникновение трехмерного дальнего порядка (сверхструктуры) возможно только в том случае, когда расположение атомов в соседних цепочках скоррелировано. Заметим, что при появлении зигзагообразных цепочек в кристалле исчезает центр инверсии, который в структуре SnS располагается посередине между двумя ближайшими атомами олова. Это значит, что пространственная группа сверхструктуры должна быть подгруппой пр. гр. D_{2h}^{16} и иметь точечную группу C_{2v} . Если ограничиться рассмотрением сверхструктур без изменения объема элементарной ячейки, то возможно два типа упорядочения атомов в сверхструктуре: 1) в одном пакете располагаются атомы одного сорта (пр. гр. $C_{2v}^7 - P2_1 nm$; рис. 4, b); 2) в одном пакете располагаются оба сорта атомов металла (пр. гр. $C_{2v}^2 - Pb2_1m$; рис. 4, *c*).

В сверхструктуре первого типа оказываются разрешенными сверхструктурные рефлексы (00l) с нечетными l, а в сверхструктурах второго типа — рефлексы (00l) и (l00) с нечетными l.

На электронограммах тонких пленок Pb_{0.5}Sn_{0.5}S, выращенных на подложках из щелочно-галлоидных кристаллов при 200°С [8], наблюдались рефлексы, характерные для сверхструктуры C_{2v}^2 . Мы попытались воспроизвести этот результат и провели отжиг объемного образца Pb_{0.5}Sn_{0.5}S при 240°С в течение месяца. При рентгеновском исследовании отожженного образца нам не удалось обнаружить никаких сверхструктурных рефлексов. По нашему мнению, данный факт может быть связан с тем, что энергия взаимодействия соседних цепочек, кратчайшее расстояние между атомами в которых равно ≈ 4.1 Å, слишком мала и необходимо проводить отжиг при более низких температурах. Таким образом, сильный ближний порядок и отсутствие дальнего порядка в наших образцах указывает на следующую особенность исследуемого твердого раствора на основе SnS: межслоевое взаимодействие атомов металла в нем оказывается сильнее, чем внутрислоевое. Это согласуется с соотношением величин соответствующих межатомных расстояний (3.5 и 4.1 Å).

Итак, из-за сильного ближнего порядка, проявляющегося в распределении атомов металла, структуру твердого раствора SnS–PbS можно представить в виде случайно расположенных фрагментов зигзагообразных цепочек, ориентированных вдоль оси c структуры. Эта явная анизотропия локальной структуры может быть причиной возникновения необычных физических свойств данных твердых растворов.

Ближний порядок в расположении атомов металла непосредственно проявляется и в строении фазовой диаграммы системы SnS–PbS. Как мы уже отмечали, протяженность однофазной области твердого раствора со стороны SnS в этой системе составляет $\approx 50\%$. Согласно нашим рассуждениям, эта концентрация отвечает предельному случаю, когда все атомы металла упорядочены в зигзагообразные цепочки. При более высокой концентрации атомов Pb в цепочках неизбежно должны появляться пары Pb–Pb, образование которых энергетически невыгодно. Это и определяет границу существования твердого раствора в изученной системе.

Список литературы

- [1] И.С. Морозов, Ли Чи-фа. ЖНХ 8, 7, 1688 (1963).
- [2] В.Г. Кузнецов, Ли Чи-фа. ЖНХ 9, 5, 1201 (1964).
- [3] H. von Krebs, D. Langner. Z. Anorg. Allg. Chem. 334, 1–2, 37 (1964).
- [4] Минералы. Справочник. Изд-во АН СССР, М. (1960). Т. 1. С. 370–373.
- [5] T. Baak, E.D. Dietz, M. Shouf, J.A. Walmsley. J. Chem. Egn. Data 11, 4, 587 (1966).
- [6] А.Д. Бигвава, Э.Д. Кунчулия, С.С. Моисеенко, Б.Б. Анисимов. Изв. АН СССР. Неорган. материалы 10, 2, 539 (1974).
- [7] З.М. Латыпов, Н.Р. Файзуллина, В.Н. Савельев, Р.Ю. Давлетшин. Изв. АН СССР. Неорган. материалы 12, 2, 206 (1976).
- [8] И.Р. Нуриев, Э.Ю. Салаев, Р.Н. Набиев. Изв. АН СССР. Неорган. материалы 22, 2, 204 (1986).
- [9] A.I. Lebedev, I.A. Sluchinskaya, V.N. Demin, I.H. Munro. Phys. Rev. B55, 22, 14770 (1997).
- [10] А.И. Лебедев, И.А. Случинская, В.Н. Демин, И. Манро. ФТТ 41, 8, 1394 (1999).
- [11] J. Mustre de Leon, J.J. Rehr, S.I. Zabinsky, R.C. Albers. Phys. Rev. B44, 9, 4146 (1991).
- [12] T. Chattopadhyay, J. Pannetier, H.G. von Schnering. J. Phys. Chem. Sol. 47, 9, 879 (1986).